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Tensor Product of Frame Manuals 

A l e x a n d e r  W i l e e  1 
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Since its first use, there has been widespread dissatisfaction with the Hilbert-space 
tensor product as a device for coupling the Hilbert-space models of  two separated 
quantum mechar~ical systems. The Hilbert-space model is paraphrased manual- 
theoretically by the assertion that quantum mechanical entities are represented 
by frame manuals. There is a natural, heuristically straightforward tensor product 
for (unital) manuals, and it is natural therefore to ask whether the tensor product 
o f  frame manuals might serve as an alternative model of separated quantum 
mechanical systems. It is shown that the states on a tensor product of  complex 
frame manuals give rise uniquely to sesquilinear forms on the tensor product of  
the underlying Hilbert spaces. In certain cases, these in turn give rise to operators, 
which, however, are not generally positive, and which, even if compact, need 
not be trace-class. 

1. I N T R O D U C T I O N  

Orthodox nonrelativistic quantum mechanics represents physical sys- 
tems (e.g., particles) in terms of separable complex Hilbert spaces: The unit 
vectors of  such a Hilbert space play a dual role, representing both the pure 
states of  such a system and the outcomes of  the "maximally informative" 
discrete experiments that can be performed on the system. This is recognized 
in Dirac's formalism, where the unit vector ~ is denoted by [if) when it 
plays the role of a state, and by (~[ when it plays the role of an outcome. 

It is fundamental to QM that (pure) states may be superposed. It is 
also a feature of QM that every pure state corresponds to a unique outcome 
which is certain to occur in that state, and vice versa. Hence, QM allows 
implicitly for the superposition of  o u t c o m e s .  

Let us take it for granted that QM is a reasonable description of 
"primitive" or "elementary" systems, without accepting that it correctly 
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describes all systems. Then we ask how we are to model a system consisting 
of  two noninteracting subsys tems-- for  example,  a pair of  spacelike-separ- 
ated particles. Traditionally, if the two subsystems are represented by Hilbert 
spaces H and K, respectively, then the composite  is taken to be represented 
by the tensor product  H | K. This is justified by an appeal to the superposi- 
tion principle (and to the assumption that QM again describes the com- 
posite): The larger system should admit states of  the form (~b, ~O), where 
is a state of  the first system and q, is a state of  the second system. Forming 
superpositions and taking the closure of  the resulting pre-Hilbert  space 
(with the obvious inner product) yields the desired tensor product  of  H | K. 

This is plausible enough as far as states are concerned, but (unless we 
accept the universality of  QM), is problematic concerning the superposit ion 
of outcomes: There is no physically plausible sense in which the outcomes 
of experiments can be "superposed."  Surely, given an outcome ~b of an 
experiment performable  on the first system and an outcome q~ of  an experi- 
ment performable  on the second, ~b| represents an outcome of  an 
experiment performable  on the second system. However,  if the two systems 
are separated, it is not clear that a nonpure tensor ~" belonging to the unit 
sphere of  H |  represents an outcome of any experiment on the joint 
system. In particular, the assumption that a state on the joint system should 
assign nonnegative probabilities to such pure tensors is not justified, nor is 
it even justified a priori to assume that a consistent assignment of  prob- 
abilities to pure tensors gives rise to an operator  on H |  

In what follows, we will discuss the consequences of  relaxing the 
assumption that the composite of  noninteracting quantum entities is 
described by quantum mechanics. We will argue that a reasonable model 
of  such a system leads to a description of states as sesquilinear forms on 
H | K which are posit ive on pure tensors and have unit trace on frames 
consisting of pure tensors. We will recover a representation of such forms 
as operators,  not on H |  K, but on H |  where / (  is the Hilbert space 
conjugate to K. This work extends to infinite-dimensional Hilbert spaces 
the results of  K1/iy et al. (1987). 

2. FRAME MANUALS 

The axiomatics of  QM can be reduced to a single statement: The sample 
spaces of  the experiments needed to describe a quantum mechanical entity 
may be identified with the frames (i.e., or thonormal  bases) of  a separable 
complex Hilbert space H. I f  one defines a state of such an entity to be a 
simultaneous assignment of  a probabili ty weight to each of these sample 
spaces-- thus ,  a nonnegative function on H ' s  unit sphere that sums to 1 
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along every f r ame- - then  Gleason 's  theorem asserts that (as long as dim H > 
2), every such state to is uniquely representable by a positive normalized 
trace-class operator  T~ such that for any outcome (unit vector) 0, t o ( 0 ) =  
(To0, r The theorems of  Stone, Wigner, and Mackey allow one to recover 
the traditional dynamics of  " 'elementary" particles within this framework. 

In order to speak clearly about  the probabilistic notions implicit in this 
discussion, it is helpful to abstract as follows (Foulis and Randall, 1981; 
Gudder ,  1988): An entity (of whatever kind) is described in terms of the 
admissible experiments whereby its properties can be investigated. It is 
reasonable to assume that these experiments are discrete, and to identify 
such an experiment with its sample space. One may wish to identify outcomes 
of distinct experiments (where one believes that these experiments "mean  
the same thing").  One is left with a collection ~ of possibly overlapping 
sets, each understood as the sample space of  an experiment. One naturally 
defines a state of such an entity to be a function to: U (~D~[0 ,  1] such 
that Y ~ e  to(x) = 1 for every E c ~4. Let f~(M) denote the set of  all such 
states. A subset A of an element E of ~ is naturally referred to as an event. 
Given a state to and an event A, we write to(A) for ~x~a oJ(x)-- that  is, 
to (A) is the probabili ty that the event A will be confirmed, in state to, if tested. 

A collection of sets M thus interpreted (and subject to certain additional 
conditions that we will be able to ignore) is called a manual. This notion 
is illustrated by the following examples: (i) I f  (S, E) is a measurable space, 
let M denote the collection of  countable partitions of  S by E-measurable 
sets. Then f Z ( J )  consists exactly of  the o--additive probabili ty measures on 
(S, E). (ii) Let H be a separable complex Hilbert space and let ~ ( H )  denote 
the set of  all frames of H. This is the frame manual of H. 

Consider a system consisting of two subsystems which retain enough 
individuality that one may perform experiments on each separately. Suppose 
that the subsystems are represented by manuals M and 93, respectively. 
Given an experiment E ~ ~ and an experiment F ~ 93, we allow that E x F 
describes a legitimate experiment on the composite system (e.g., the experi- 
ments E and F may be performed independently on the subsystems and 
the results collated at some later time). I f  the system represented by M does 
not exert any causal influence on the second system, so that the execution 
of an experiment E ~ ~g does not affect the state of  the system represented 
by 93, then we must also allow compound experiments, in which an initial 
experiment E belonging to M is executed, and, if the outcome x is secured, 
a definite experiment Fx ~ 93 is subsequently performed. 

It will be convenient to adopt  a juxtapositive notation for ordered pairs 
of  outcomes. Thus, we will write xy instead of (x, y), AB instead of  A • B, 
where A and B are events, and xA instead of {x} x A, where x is an outcome 
and A an event. Then, clearly, the outcome set for a compound experiment 
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such as described above is 

U xFx 
xEE 

where E ~ ~ and Fx e ~ for each x e E. Similarly, if the second system does 
not influence the first, compound experiments of the form 

U Eyy 
y c F  

where F e ~ and for each outcome y ~ F, Ey ~ ~ must be allowed. The 
collection of  all such experiments is denoted M~ [for more details, consult 
Foulis and Randall (1985) or Klfiy (1988)]. 

Let us consider the states on ~/~:  It is not difficult to see that 
U M~  =LJ M x U  ~. Since the product operations EFbelong  to M~, a state 
on M~  must sum to t over such operations. Denoting the collection of 
product  operations by ~ x gd (if the abuse may be forgiven), one sees that 
f~(M~) consists of  those to ~ ~ ( M  x ~ )  having the property that to(Ey) and 
to(xF) are independent of E and F for every x and y, i.e., those states that 
reveal no influence of the one system on the other when one conditions by 
the choice of an experiment. 

In discussing states on manuals, it is helpful to introduce the span of  
~(~t )  in R x, where X = U (~) .  This span is called the signed weight space 
of  M, and denoted by V(M). We refer to an element of the positive cone 
of V(M) (ordered pointwise on X)  as a positive weight on M. The f~ is a 
base for this positive cone, and it can be shown (Cook, 1985) that V(~/) 
is always complete in the associated base-norm. 

Kl~y et aL (1987) were able to compute the dimension of  V ( ~ )  when 
this is finite and were thereby able to prove the following: 

Theorem 2.1. If V(M) and V(~ )  are finite dimensional, then 

V ( ~ )  = V ( ~ ) |  V ( ~ )  

V ( ~ )  is characterized for arbitrary manuals J and ~ as follows 
(Wilce, 1989). 

Proposition 2.2. For any ~ and ~,  V(~/~)  is isomorphic to the posi- 
tively generated part of the space of weak*-to-weakly continuous linear 
operators f :  V * ( J )  ~ V(~) .  

This result (of which Theorem 2.1 is a special case) is a consequence 
of  the following simple observation, which we will also exploit. 

Lernma 2.3. The positive weights on ~ are in one-to-one correspon- 
dence with the set of nonnegative functions to on X Y  such that (i) for every 
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product  operat ion EF in M x ~ ,  

Z to(xy) < oo 
xy~- E F  

and (ii), for every x ~ X, y ~ Y, the functions to(x. ) and to(. y) are positive 
weights on M and ~,  respectively. 

We now restate our problem: I f  we accept that each of  a pair  of  
noninteracting physical systems is represented by a frame manua l - - say ,  by 
~ ( H )  and ,~(K) ,  respect ively-- then the composite system is (at worst, 
under-) described by the manual  ~T:= ~ ( H ) ~ ( K ) .  What can be said 
about  11(~) ? 

3. S T A T E S  O N  A T E N S O R  P R O D U C T  OF F R A M E  M A N U A L S  

Let H, K, and ~= be as described above. There is a natural interpretation 
~-~ ~ ( H |  given by to6 ~-~ 0000| Notice that this is not an injection, 
since for ]al = 1, ( a 6 ) t o  = ~ (a to )  in ~. Every density operator  W on H |  
determines a state to on ~ by to(6to)= (W6|  6| 

KlSy et al. (1987) apply Theorem 2.1 to show that, if the Hilbert spaces 
H and K are finite dimensional (and have dimension >2) ,  then, conversely, 
every state on ~ could be represented uniquely by a self-adjoint operator  
W on H | K which is positive on pure tensors: 

( w4~ | to, 4, | to ) >- o 

In this section, we show that, in general, states on ~ can be represen- 
ted, if not by operators,  at least by sesquilinear forms on the algebraic 
tensor product  of  the two Hilbert spaces. To avoid constant repetition, 
we adopt  the convention that all Hilbert spaces under consideration have 
dimension >2.  

Definition 3.1. Let H Q K  denote the algebraic tensor product  of  H and 
K. We will say that a state to c o~ is represented by a sesquilinear form qb 
on H G K iff for all unit vectors 6 c H and to c K, 

to(~to) = r 1 7 4  to, ~ |  

in which case we write w--qb. I f  A is an operator  on HE) K and qb is 
the sesquilinear form (A-,  -), we will say that w is represented by A, and 
write w - A. 

Recall (Kadison and Ringrose, 1983, pp. 125-143) that a sesquilinear 
form @ on H x K is Hilbert-Schmidt iff there exist frames E and F for H 
and K, respectively, such that 

52 Ir y)l 2 < oc 
x , y ~  E F  
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and that a sesquilinear form lifts to a continuous functional on the tensor 
product  H |  iff it is Hilbert-Schmidt.  Also, recall that an operator  A on 
H is HS iff the associated form ( A . , . )  is HS. Immediately we have the 
following result. 

Lemma 3.2. A state to ~ l~(~ r) is representable by an operator  iff to - qb 
for some form cb such that @(~b| ~7| is HS in (~7, if) for each pure 
tensor ~b @ qJ, and is represented by a bounded operator iff qb is Hilbert-  
Schmidt in (~b, q,) and (rt, if) separately. 

Lemma 3.3. Let t o -  qb and t o -  ~ .  Then qb = W. 

Proof It suffices to show that a sesquilinear form �9 on H |  is 
uniquely determined by the biquadratic form qb(~b| 4~| The form 
qb(~b | 0, 77 @ ~), which clearly determines O, is sesquilinear in qJ and if, and 
hence, for fixed ~b and r/, is determined by the quadratic form qb(~b @ qj, ~7@ 
0). Now, fixing 0 and polarizing again, the original form is seen to depend 
only on qb(~b@~b, ~b| [] 

Corollary 3.4. A PPT operator  is necessarily self-adjoint. 

Definition 3.5. A sesquilinear form �9 on H Q K is positive on pure 
tensors (PPT) iff @(~b@ 0, ~b |  for all ~b ~ H and ~b~ K. A PPT form 
@ has finite trace iff there exist frames E of  H and F of K such that 

Tr(qb):= ~ qb(d~@q~,,;b| ) 
~ O e E F  

is finite. We will speak of an operator A on H |  asbe ing  PPT or having 
finite trace iff the associated sesquilinear form is PPT or has finite trace. 

Lernma 3.6. Let qb be PPT with finite trace. Then Tr(O) is well defined. 

Proof Define ~o on X Y  (the product  of  the unit spheres of  H and K )  
by to(~b~0) = @(~b| ~b@4'). Then, for fixed ~b, w is a quadratic form in 
summable over some frame of K. But then w(~b, .) is the form determined 
by a trace-class operator,  whence it sums to a common,  finite value over 
all frames of  K. Similarly, to(. ,  0) sums to a common value over all frames 
of  H. Since to sums to a finite value over a product  frame EF, it sums to 
the same value over all product  frames. �9 

The preceding lemmas together with Lemma 2.1 add up to a proof  of  
the following. 

Proposition 3.7. Every state on ~ is represented by a unique sesquilinear 
form on H Q K. A sesquilinear form on H C)K represents a state on f f  iff 
it is PPT with trace 1. 
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Since ~- and ~ ( H )  x ~ ( K )  have the same outcomes, we may speak 
of  states on the latter as being represented by forms or by operators on 
H (3 K. However,  we have the following result. 

Corollary 3.8. A state on W*(H)x ~ ( K )  is representable by a ses- 
quilinear form on H @ K iff it is a state of  ~. 

Thus, the distinguishing feature of  influence (as here described) is 
nonlinearity: A state on i f ( H )  • ~: (K)  reflects the influence of one system 
on the other iff it is not a state on W'(H)| i.e., itt it does not extend 
to a sesquilinear form on H Q K. 

Notice that every positive operator is PPT, and that a positive operator  
has finite trace iff it is trace-class. The simplest example of  a PPT operator  
that is not positive is the alternation operator,  defined in case H = K by 
A ( 6 | 1 7 4  Notice that if H = K  has dimension n, then (1/n)A 
defines a state on ~-, namely, o)(~b0) = (1/n)l{4~, 0)12. 

The following example shows that a compact  PPT operator  on H | K 
may have finite trace even though not trace-class. 

Example 3.9. Let H=@kHk, where Hk is k-dimensional. Let Ak be 
the alternation operator  on Hk| Define an operator  A on H| 
@k,j Hk| by 

A=@ I Ak 
k k 3 

[understanding that @k=j Hk(~Hj~ Ke(A)].  Then A is a norm limit of  
finite-rank operators,  hence, compact;  A is PPT and has finite trace, but is 
not trace-class: IAkl is the k x  k identity operator,  which has trace k 2, so 
the trace of  

1 A 

is infinite. (Notice that, although not trace-class, A is Hilbert-Schmidt.)  
Thus, the class of  opera tors- -even,  of  compact  opera to r s - -on  H |  K 

that represent states on f f  is properly larger than the self-adjoint trace-class 
of  H| 

The problem of characterizing explicitly the PPT opera tors - -even  in 
the simplest case of  interest, namely, C2|  nontrivial, and remains 
unsolved. In particular, no characterization is known of  the extreme points 
of  f~(~).  It is not totally obvious that the usual QM pure states, i.e., the 
one-dimensional projections on H | K, represent pure states in fL 
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4. REPRESENTATION OF STATES BY OPERATORS 

We now ask when it is possible to represent a given state to by an 
operator on H |  K. It does not follow from Proposition 3.6 that every state 
is representable by an operator on HQK,  let alone by one on H| We 
will obtain a representation instead by operators on H |  

Lemma 4.1. To every state of ~ there corresponds a unique pair A, 
A-  of  weak*-to-WOT continuous linear operators 

A: ~ h ( H ) ~ , , h ( H )  

A-:  ~3h(K)~ , ,h (K)  

such that for unit vectors ~b ~ H and 4, ~ K with corresponding projections 
P~ and P~, 

to (~b4,) = Tr(A(Pe,)P~) = Tr(A-(P~,)P~) 

Proof  This is merely a translation of  Proposition 2.1 into the context 
of  frame manuals. �9 

Proposition 4.2. Let H = K. Then to every state on ~ there corresponds 
a unique operator A on H |  such that 

to(4', 4,) = <A,~ @ 4~, 4,@47) 

Proof Recall that H |  is isomorphic to the Hilbert-Schmidt class 
of  H by the map 6 | 4, ~ T~,z, where 

T~,,n = (n, 0)~ 

Extend A,, to all of  ~ ( H )  by the Cartesiandecomposit ion.  Then note that 
A,, is determined by its values on finite-rank operators, hence also by its 
restriction to the Hilbert-Schmidt class. The range of A,, is contained in 
the trace-class, hence, in the Hilbert-Schmidt class. It is clear from Proposi- 
tion 4.1 that A~ functions as an adjoint for A,o, so, by the Hellinger-Toeplitz 
theorem, the latter is bounded. Finally, since the isomorphism ~b | 4, ~-> T~,., 
identifies ~b|  with the projection P~, Ao~ represents to in the desired 
way. �9 

If  H # K, then with no loss of generality, suppose U is a unitary map 
from K into H. We then obtain, for each to, an operator A on H | K such 
that for all unit vectors ~b and 4,, 

to(64,) = ( A ( 6 |  U*4~), U6|  

We will refer to A as the auxiliary representation of to, and write A = A~o. 
In the case K ~ H, this representation depends on an arbitrary choice of 
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the unitary U, but is otherwise unique. To simplify the discussion, we will 
/ 

assume henceforth that H = K. 

Lemma 4.3. If H is separable, Ao, is a compact operator. 

Proof. It is known that every bounded linear operator from 12 to l 1 is 
compact. Choosing E to be any orthonormal basis for H |  consisting 
of  pure tensors, 12(E) is isomorphic to the Hilbert-Schmidt class of  H and 
the trace-class of H is isomorphic to a subspace of  l~(E). The Hilbert- 
Schmidt norm is larger than the operator norm; hence, the l~-norm of A~, 
is uniformly bounded on the unit ball U2 of 12. Hence, A~ (/-/2) is compact 
in /~-- thus ,  also compact in /2. �9 

Corollary. Every signed weight on ~ @  ~- is representable by a unique 
sesquilinear form. 

Proof. Let F (6 ,  ~, -q, ~) = {A,o~ | ~7, r / |  ~}. This form is bounded in all 
arguments, linear in ~b and if, and antilinear in ~ and ~--hence, lifts uniquely 
to a sesquilinear form ~ ( 6 @ ~ ,  ~7| on HQH.  �9 

The state to is now representable in two ways: by a sesquilinear form 
qb on H Q H  and by an operator Ao, and its associated sesquilinear form 
on H@/-Tr. The two forms may be expanded as forms F and (7, respectively, 
in four variables; then we have 

to(~b, ~) = F (6 ,  ~, ~b, ~) = G(OS, 4~ ~, ~7) 

Evidently, the one form is obtained from the other by permuting the two 
middle terms and then conjugating in the second and fourth terms. One 
naturally asks whether the boundedness of (A ' ,  "} can be used to secure 
that of  qb. 

Proposition 4.5. A state to is representable by a Hilbert-Schmidt 
operator on H |  iff the auxiliary representation A~, is Hilbert-Schmidt. 

Proof. Define a map q~: (H|  x (H| (HQISI)|174 by 

~(,/,| ~, n |174174174 
To see that such a map exists, note that �9 arises as the composition 

= ( I |  o R - '  o ( I | 1 7 4  o ( l x  J)  

where J: ( H |  H)-+ (/-I |  is the antilinear conjugation map 

~| ~| 

R is the operator ettecting the reassociation 

(H| H) |174 ~ H | 1 7 4 1 7 4  

and A is the alternation operator mapping H | H on to /q  | H. The operators 
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A and R are bounded, as is the sesquilinear map 1 • J. Hence, �9 is also a 
bounded sesquilinear map. If  Ao~ is Hilbert-Schmidt, then the sesquilinear 
form (A~., .) determines to a bounded linear functional F on ( H | 1 7 4  
( H |  via 

F(~ | ~ |  ~ | ~') = (A,,,~ | ~, ~| 
Hence, F o �9 defines a bounded sesquilinear form, and thus, a bounded 
operator W, on H | H, with 

( We | ~,b, r | = F(~(cb | ~b, r | #J)) = (Ao, t,b | 4]-, (,h | 47) = to(e0)  

i.e., W -  to. Since Ao~ is Hilbert-Schmidt, given any frames E and F for H, 

xZ I(A~4,| #, ~| 

It follows that the sesquilinear form affiliated with W - w  is likewise 
square-summable over a frame (namely, EF) of H |  H, and hence, that W 
is Hilbert-Schmidt. This last argument is symmetric in W and A~ ; hence, 
if to is known to be represented by a Hilbert-Schmidt operator W, we may 
conclude that Ao~ is Hilbert-Schmidt. [] 

In particular, the usual QM states, being representable by trace-class 
operators, have Hilbert-Schmidt auxiliary representatives. It is not out of 
the question that every PPT operator with finite trace is Hilber t -Schmidt--at  
any rate, we have no counterexample. The question of whether every state 
on the tensor of frame manuals is representable by a PPT operator remains 
open. 
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